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Abstract

State-of-the-art generative adversarial networks (GAN) can generate high-quality images with limited train-
ing datasets. In this work, we use these GANs to synthesize images for augmenting an industrial dataset and
find out whether we can use dataset augmentation to improve the performance of downstream tasks, includ-
ing classification and segmentation. The industrial dataset has high-resolution images of pump parts with
small defects, and we crop the pump images into patches. We propose a defect-pasted technique to create
more pump patches with defects for the training of GAN, and our experiments show that it helps GANs
generate defects. The classification task is to identify whether a pump patch image has defects, and the seg-
mentation task is to find the exact location of the defects. For classification, we generate pump patches from
the StyleGAN2-ADA to over-sample patches with defects. For segmentation, we propose a modification to
the SemanticGAN and use our GAN to generate pump patch images/labels for augmentation of the training
set. The performance of the classification model is greatly improved after augmenting the dataset with our
synthesized pump images. However, our dataset augmentation does not bring a performance boost to the
segmentation task. It needs more exploration on how to make GAN generate informative images/labels for
the segmentation model.

The other part of our work is minority-class semantic generation because we find that the semantic labels
of minority classes are less likely to be generated. We propose a new loss term, distribution loss, to have
further control over semantic label generation. This loss term can make our semantic GAN generate more
pixels of minority classes, but it causes some artifacts to the synthesized labels in the CelebAMask-HQ
dataset.
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industrial dataset, pumps image dataset, which is proviedd by KNF Flodos. I’m thankful for all the kind
colleagues working in the robotics department of CSEM to attend my mid-term presentation and gave me
advice from very different perspectives.

I’m very grateful for my parents’ financial and emotional support for my master’s studies, and it means
a lot to me. I want to also thank all my friends and roommates for talking to me and cheering me up. And
the cute cats, Siri and Luci, always made me happy in the last two months. Last but not least, I would
like to thank my lovely boyfriend, Chun-Ming, for his encouragement and everything he has done for me
during some of the stressful weeks. Finally, thanks to God, it’s a blessing to have such an outstanding master
thesis.





Contents

1 Introduction 1
1.1 Focus of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Related Work 3
2.1 Generative adversarial networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Data augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Industrial Dataset Augmentation 5
3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2.1 Defect Pasted Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2.2 Modified Semantic GAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2.3 Dataset Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.4 Metrics for Synthesized Semantic Labels . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3.1 Industrial Image Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3.3 Industrial Image and Label Generation . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3.4 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Minority Semantic Class Generation 15
4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2.1 Semantic Gradients for Image generation . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.2 Distribution Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3.1 Image Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3.2 Segmentation by Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3.3 Industrial Image Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3.4 Industrial Image Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Conclusion 23

I



CONTENTS

A Supplementary Material for Industrial Dataset Augmentation 25

B Supplementary Material for Minority Semantic Class Generation: CelebAMask-HQ Dataset 27

C Supplementary Material for Minority Semantic Class Generation: Pump part Dataset 31

II



List of Figures

3.1 Raw images of the pump part dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 A pump image and its label after center crop . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Real and defect-pasted pump patch images. The left image is the real patch image with

defects, and the middle and right images are other good images after pasting defects from
the real one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.4 Model structure of our modified version of SemanticGAN . . . . . . . . . . . . . . . . . . 8
3.5 Pump patch images with defects generated from StyleGAN2-ADA . . . . . . . . . . . . . . 9
3.6 Synthesized pump patch images and labels generated from SemanticGAN . . . . . . . . . . 11
3.7 Synthesized pump patch images and labels generated from our method . . . . . . . . . . . . 11
3.8 Comparison of defect pixels distribution of synthesized pump patches between Semantic

GAN and ours. The Earth-moving distance between real and fake is shown in Table 3.2.
Note that the axis is truncated at 0.1 to make the difference clear. . . . . . . . . . . . . . . . 12

3.9 Qualitative examples of segmentation prediction of pump patch images with defects. The
segmentation model is trained with dataset augmented by our method. . . . . . . . . . . . . 13

4.1 Synthesized face images and semantic labels generated from original SemanticGAN . . . . 17
4.2 Synthesized face images and semantic labels generated from our method without distribu-

tion loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Synthesized face images and semantic labels generated from our method with distribution

loss on class earring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 Synthesized face images and semantic labels generated from our method with distribution

loss on all classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.5 Synthesized pump patch image and labels generated from SemanticGAN . . . . . . . . . . 19
4.6 Synthesized pump patch image and labels generated from our method with distribution loss 19
4.7 Synthesized pump patch image and labels generated from our method without distribution

loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

B.1 Pixel distribution of class brow in synthesized labels . . . . . . . . . . . . . . . . . . . . . 27
B.2 Pixel distribution of class ear in synthesized labels . . . . . . . . . . . . . . . . . . . . . . 28
B.3 Pixel distribution of class mouth in synthesized labels . . . . . . . . . . . . . . . . . . . . 28
B.4 Pixel distribution of class eye in synthesized labels . . . . . . . . . . . . . . . . . . . . . . 28
B.5 Pixel distribution of class nose in synthesized labels . . . . . . . . . . . . . . . . . . . . . . 29
B.6 Pixel distribution of class hair in synthesized labels . . . . . . . . . . . . . . . . . . . . . . 29

C.1 Percentage of pixels labeled as defects in generated labels. . . . . . . . . . . . . . . . . . . 32

III



LIST OF FIGURES

IV



List of Tables

3.1 Mean testing results for pump patch classification with different dataset augmentation methods. 10
3.2 Quantitative metrics of defects in synthesized labels. The smaller Earth-Moving Distance

indicates the distribution is closer to the real one. . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Mean testing results for pump patch segmentation with different dataset augmentation. . . . 13

4.1 Distribution of earring pixels in synthesized labels of different GAN models. . . . . . . . . . 17
4.2 Testing mean IoU for each classes of segmentation by encoder-generator segmentation model 18
4.3 Distribution of defects in semantic labels generated from different GAN models. . . . . . . . 19
4.4 Mean testing results for pump patch segmentation in the hypothetical scenario where pump

patches with or without defects are around half and half. . . . . . . . . . . . . . . . . . . . 20

A.1 Pump patch classification results with different size of dataset augmentation of our method. . 25
A.2 Pump patch defects segmentation results with different different size of dataset augmenta-

tion of our method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

C.1 Percentage of defect pixels in synthesized pump patch labels of different checkpoint models. 31
C.2 Percentage of synthesized pump patch labels with defects of different checkpoint models. . . 31

V



LIST OF TABLES

VI



Chapter 1

Introduction

1.1 Focus of Work

It has been known that the generative adversarial networks (GAN) need a large amount of data to train to
generate good images. Fortunately, some recent studies have enabled GANs to generate images with limited
training sets. That makes it easier to achieve dataset augmentation by images generated from the GAN
model. Some research has indicated that GAN-based over-sampling in biomedical images can improve
classification performance. We want to explore the possibility of GAN-based dataset augmentation in a
unique industrial image dataset, the pump part dataset. We first train a state-of-the-art GAN model to
generate images of the minority class, pump part with defects. Next, we build a baseline classifier to measure
how much performance improvement we can earn from augmenting the dataset by fake images generated
from the GAN model.

In addition to generating more images in the minority class for the classification task, our work also
includes generating both images and semantic labels to augment the segmentation task’s training set. The
SemanticGAN[15] can generate images and semantic labels with unlabelled images and a small number of
labeled images, and we want to investigate the potential of dataset augmentation for segmentation tasks in
the industrial dataset, where the target class, defects, only take up a tiny part of the image. To make the
GAN model better at generating the minority classes, we propose some modifications to the SemanticGAN.
Next, we train a baseline segmentation model to see if dataset augmentation can boost the segmentation
task’s performance.

To generalize our research about SemanticGAN, we expand our experiments to the public dataset,
CelebAMask-HQ[14], and we find that the SemanticGAN has a hard time generating minority classes.
Therefore we attempt to provide more incentives for the generator to generate those minority classes by
adding an additional loss term to affect the pixel-wise distribution. We utilize the encoder-generator seg-
mentation model in the SemanticGAN to quantify the effect of our method. Correspondingly, we apply
the loss term to our industrial dataset with similar experiment settings and train a segmentation model to
evaluate the quality of generated images and labels.

1.2 Thesis Organization

This work consists of two major parts: industrial dataset augmentation and minority semantic class genera-
tion, and they are organized independently in two chapters. The chapter on industrial dataset augmentation
covers how we improve the quality of synthesized images and labels. It also includes the experiments and

1



CHAPTER 1. INTRODUCTION

results of the downstream tasks after the dataset augmentation. The other main chapter of minority semantic
class generation would mainly focus on the experiments on the CelebAMask-HQ dataset and the details of
the loss term we propose, such as how the label distribution changes after adding the loss.
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Chapter 2

Related Work

2.1 Generative adversarial networks

Generative adversarial networks[3] (GAN) is designed by Goodfellow et al. in 2014. A GAN involves a
generator that generates data points from random noise and a discriminator which evaluates the realness of
the synthesized data points. The generator aims to generate data points that look like actual data, and the
discriminator tries to distinguish them. By letting the generator and discriminator compete and learn from
each other for many iterations, the generator can eventually produce fake data points that are very similar to
real ones. This GAN training process can be described by Eq. 1.

min
G

max
D

V (G,D) = Ex∼pdata
[logD(x)] + Ez∼p(z)[log(1−D(G(z)))] (1)

Image synthesis can be achieved by using specific architecture for the discriminator and the genera-
tor in the GAN framework. Radford et al. proposed deep convolutional generative adversarial networks
(DCGAN)[22]. It leverages the power of deep convolutional neural netork[13] and successfully generates
good images stably. The architecture of DCGAN uses convolutional and convolutional-transpose layers
in the discriminator and the generator, respectively, and applies batch normalization to them. Progressive
Growing GAN[9] further improved the training stability by fading in layers with an increasing spatial res-
olution during training for both discriminator and generator. In addition, they boosted the variation among
synthesized images by taking the standard deviation of features on mini-batch and making it an additional
feature map for the discriminator. As a result, Progressive Growing GAN has gained great success in
generating good quality and high-resolution images. StyleGAN[10] improves the generator of Progressive
Growing GAN by applying adaptive instance normalization[7], and StyleGAN2[12] further restructure the
progressive-growing architecture to skip generator and a residual discriminator to have even better image
quality.

Image synthesis with limited data is what we need for applying GAN models to industrial datasets
because data collection and labeling are usually very costly in the industry. The models tend to overfit
when the size of the training set is too small. However, performing geometric transforms on training data
to prevent overfitting in GAN models may cause leaking, which means that the synthesized images are
affected by those transforms. The adaptive discriminator augmentation techniques[11] proposed by Karras
et al. solved the leaking problem by applying differentiable augmentation[30] and adaptively adjusting the
augment probability based on the level of overfitting. Liu et al. approached the overfitting problem by
designing the skip-layer channel-wise excitation module for the generator to have strong gradient flow and
restructuring the discriminator to a self-supervised feature encoder trained with extra decoders[17].

3



CHAPTER 2. RELATED WORK

Conditional image synthesis allows us to have some control over the synthesized image. Mirza and
Osindero introduced conditional GAN[19], which feeds the class label to both discriminator and gener-
ator as an additional input layer. With pix2pix[8], we could even manipulate the synthesized images
on pixel level through conditioning upon pixel-wise label. The multi-scale generator and discriminator
architecture proposed by Wang et al. [27] further enabled high-resolution image synthesis conditions on
semantic labels, and this work provided a great foundation for many following studies of improving the
quality of the synthesized images. Park et al. proposed a new normalization method, spatially-adaptive
normalization(SPADE)[21], for the generator to better preserve the semantic information during training.
Sushko et al. [26] designed a segmentation-based discriminator to better match the images to the input
semantic labels and added 3D noise to increase the variation. Ntavelis et al.[20] suggested to handle the
image and semantic labels input by two independent streams in the PatchGAN discriminator to extract more
information from the semantic labels.

Semantic image synthesis is a relatively new topic in the field of image generation. Most GAN models
focus on generating images, and semantic labels are usually used as input conditions instead of being gen-
erated as output results. This state-of-the-art research about semantic image synthesis breaks new ground
in this field. Li et al. proposed SemanticGAN[15], which is built on top of the StyleGAN2[12]. They
added a semantic branch to the generator of StyleGAN2 and a semantic discriminator, a multi-scale patch
discriminator[27], to discriminate the concatenation of images and semantic labels. The synthesized im-
ages and semantic labels are generated together from different branches of the same generator model. This
SemanticGAN can also be seen as a segmentation model along with an encoder. After the generator is
well-trained, they trained an encoder with the labeled data by minimizing the reconstruction loss and dice
loss while the generator is frozen. As a result, the SemanticGAN can take any out-of-domain images and
produce corresponding semantic labels. Another parallel research, DatasetGAN[29], also suggested an effi-
cient method to annotate images by taking advantage of a strong pre-trained StyleGAN[10] network. With
a minimum number of manually labeled images, they trained a style-interpreter to produce corresponding
semantic labels of generated images.

2.2 Data augmentation

Data augmentation could significantly improve the network performance by mitigating overfitting, espe-
cially when the size of the training set is small[25]. Manipulating the existing dataset by color or geometric
transformation, such as flip, rotation, and translation is the most common image processing augmentation.
With the development of GAN models, generating new images to augment the dataset is also feasible.

Inner-class imbalance[24] refers that some minority classes have much fewer samples than other ma-
jority classes, and that is when GAN models might come in handy. It has been shown that taking generated
images from GAN models as dataset augmentation in biomedical image analysis can improve diagnostic
sensitivity. Frid-Adar et al.[2] improved the sensitivity and specificity by using DCGAN to generate CT
scans of liver lesions. Han et al. proposed condition progressive growing GAN[4] with highly rough bound-
ing box condition to generate brain MR images with tumors, and it increased 10% sensitivity in diagnosis.
GAN-based up-sampling can also be useful in other public datasets. For instance, Zhu et al.[32] applied
CycleGAN[31] to up-sample minority emotion class and increased the classification accuracy.
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Chapter 3

Industrial Dataset Augmentation

The research objective of this part of our work is to explore the possibility of industrial dataset augmentation
by GAN models and to experiment whether the dataset augmentation could improve the performance of
downstream tasks, including classification and segmentation.

3.1 Dataset

Our industrial dataset, is an image collection of a particular type of part in pumps. We would like to
thank KNF Flodos for kindly providing the pumps image dataset. These pump part images have high
resolution, which is 3200 by 2224. There are 498 images in the training set and 161 images in the testing
set. Each image has its corresponding pixel-wise label, which indicates the location of the defects of that
pump part. We only work on one specific type of pump part, and these pictures were taken in a standard
process. Therefore, the image structure and content are highly similar in the dataset, except that there is
some brightness difference, as shown in Figure 3.1. The primary purpose of the pump dataset is to identify
whether there are defects in the pump part.

Figure 3.1: Raw images of the pump part dataset

5



CHAPTER 3. INDUSTRIAL DATASET AUGMENTATION

3.1.1 Pre-processing

It is crucial to retain the original resolution of the pump images as much as possible because the defects
are usually tiny relative to the full image. However, it would be challenging to work on images with such
resolution. Thus, we crop the raw images into smaller patches by the following pre-processing steps: At
first, we center crop the pump part image to the size of 1920 by 1920, which cut off the background and
some parts irrelevant to defects. Figure 3.2a exhibits a pump part example after center cropping, and we can
get the general idea about the size of defects from this figure. Next, we randomly crop patches of size 256
by 256 from the center cropped pump part images, and the defects would become much more perceivable
in the patch images. The patches are resized to 128 by 128 in the following work to accelerate the training
process while preserving most of the information. All of our research is conducted on these resized pump
patch images instead of full pump images.

(a) Pump Image (b) Semantic label

Figure 3.2: A pump image and its label after center crop

3.2 Methods

We generate pump patch images and image/label pairs with defects by the StyleGAN2-ADA[11] and our
modified version of SemanticGAN[15], respectively. It is pretty challenging for the GAN model to correctly
generate the defects because they are not very noticeable and only take up a small part of the patch images.
We propose defect pasted augmentation to create more pump patch images with defects for better training
of the GAN models. In addition, we modify the SemanticGAN structure to make it generate more visible
defects in both images and labels. Besides, we present a method to quantify the proximity of distribution of
synthesized and actual semantic labels.

3.2.1 Defect Pasted Augmentation

To increase the number of patch images that have defects, we take advantage of the unique property of
this industrial dataset and come up with an augmentation method, defect pasted augmentation, which is
specifically for datasets with fixed image structure. The idea of our augmentation is to copy and paste,
copying the area of defects and pasting it to another good patch image. The destination patch images must
cover the same components of the pump part as the source patch images, making the pasted patch images

6



CHAPTER 3. INDUSTRIAL DATASET AUGMENTATION

more realistic. The brightness of destination patch images must also be reasonably close to the source patch
images. From Figures 3.3, we could see that the defects are pasted to the correct location with only a few
pixels of deviation. With these defect-pasted patch images, we can have more patch images with defects in
the training set for the GAN models to improve the visibility and quality of defects in the generated patch
images.

Figure 3.3: Real and defect-pasted pump patch images. The left image is the real patch image with defects,
and the middle and right images are other good images after pasting defects from the real one.

3.2.2 Modified Semantic GAN

The authors of SemanticGAN[15] specifically pointed out that they stopped the gradients produced by se-
mantic label discriminator into the generator through the image synthesis branch because they wanted the
generated labels to match the images instead of the other way around. In contrast, adjusting the images to
match the labels is what we desire in our industrial image/label generation. Hence, we suggest letting the
gradient of semantic label discriminator backpropagate to the generator via the image branch in the Seman-
ticGAN. The generator can better synthesize the defects in the patch images to match the generated labels.
Our modified semantic GAN is visualized in Figure 3.4. The loss functions of generator, discriminator of
image and discriminator of semantics are Eq. 2, Eq. 3, and Eq. 4, respectively. The x and y denote images
and labels, their subscript r and f means real and fake, and the Du and Dl represents unlabelled and labeled
data. Although the loss functions remain exactly same as the SemanticGAN, the image generation branch
is trained with gradients from both Dimg and Dsem instead of only gradients from Dimg. Correspondingly,
those geometric transformations in the labeled data would leak to the synthesized images. Hence, only
horizontal and vertical flips are allowed for the labeled training set after the gradient modification.

LG = E
(xf ,·)=G(z),z∼p(z)

[log(1−Dimg(xf ))] + E
(xf ,yf )=G(z),z∼p(z)

[log(1−Dsem(xf , yf ))] (2)

LDimg = E
xr∼Du

[log(Dimg(xr))] + E
(xf ,·)=G(z),z p(z)

[log(1−Dimg(xf ))] (3)

LDsem = E
(xr,yr)∼Dl

[log(Dsem(xr, yr))] + E
(xf ,yf )=G(z),z∼p(z)

[log(1−Dsem(xf , yf ))] (4)

7



CHAPTER 3. INDUSTRIAL DATASET AUGMENTATION

Figure 3.4: Model structure of our modified version of SemanticGAN

3.2.3 Dataset Augmentation

We augment the dataset for two kinds of downstream tasks, classification and segmentation. For the classi-
fication task, we want to over-sample the patch images with defects by adding fake images generated from
StyleGAN2-ADA[11] to the training set of the classification model. The GAN model would focus on un-
conditionally generating patch images with defects because there are plenty of healthy patch images. The
training set for the StyleGAN2-ADA is real patch images with defects and our defect-pasted patch images.
The synthesized patch images can be labeled as having defects for the classification. As for the segmen-
tation task, we generate patch images with defects and their semantic labels via our modified version of
SemanticGAN[15]. Likewise, only images and image/label pairs with defects are included in the training
set for our GAN model.

To evaluate the effectiveness of dataset augmentation, we train baseline models for both classification
and segmentation tasks and find out whether there is a performance improvement after adding our generated
patch images to the training set of the baseline models.

3.2.4 Metrics for Synthesized Semantic Labels

Because most semantic labels are annotated by humans manually, and the synthesis of semantic labels is
relatively novel, there are no standard metrics to evaluate the quality of semantic labels generated from noise.
We propose using a histogram to represent the number of pixels among synthesized semantic labels for each
class. We can compute the Wasserstein distance[23] (Earth-Moving distance) between the histogram of
actual semantic labels and synthesized ones to evaluate whether specific classes are underrepresented. We
use the distance to evaluate how close the distributions of synthesized semantic labels are to the real ones.

3.3 Experiments and Results

We generate pump patch images with defects by StyleGAN2-ADA and train a classifier to see if appending
the synthesized images to the training set can improve the classification performance. Similarly, we generate
image and semantic label pairs by our modified semantic GAN and train a segmentation model to investigate
if the synthesized image-label pairs can be used as dataset augmentation. The details of model training and
results are illustrated in the following sections.

8



CHAPTER 3. INDUSTRIAL DATASET AUGMENTATION

3.3.1 Industrial Image Generation

To train a GAN model for generating pump patch images with evident defects, the training data for the
GAN model includes not only pump patch images with defects but also our defect-pasted pump patches.
The GAN model would ignore those defects and generate many good pump patches if we train the model
with random patch images, with around five percent of images having defects.

The implementation we use for StyleGAN2-ADA is the officially released codes: https://gith
ub.com/NVlabs/stylegan2-ada-pytorch. There are 6662 patch images with defects and
26648 defect-pasted patch images in the training set, and they are resized from 256 by 256 to 128 by 128.
The training configuration is auto, and the model is trained until the Fréchet inception distance (FID)[1]
converges to 16.05, after around 18900K images are shown to the models. The synthesized results are
shown in Figure 3.5a, and we can see that there are apparent defects in almost every synthesized patch
image. Although some of them are slightly dislocated due to the artifacts of defect-pasted pump patches,
the quality is generally pretty good. To demonstrate the effectiveness of our defect-pasted augmentation,
we also train a model without it to approximately the same number of iterations, and the FID is 19.66. The
defects in synthesized patch images are less visible than the ones with defect-pasted augmentation, as shown
in Figure 3.5b.

(a) Trained with defect-pasted augmentation (b) Trained without defect-pasted augmentation

Figure 3.5: Pump patch images with defects generated from StyleGAN2-ADA

3.3.2 Classification

We train a binary classification model to evaluate if augmenting the dataset by the synthesized patch images
can improve the classification performance. The details about the dataset, models, and results are explained
below.
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CHAPTER 3. INDUSTRIAL DATASET AUGMENTATION

Dataset

The training and testing dataset of this task are pump patch images of 128 by 128, as stated in the pre-
processing section. We randomly crop 64 patches from each pump image, leading to a highly imbalanced
dataset; approximately 5% of the patch images have defects. More specifically, there are 31872 patch images
in the training set (1607 of them have defects) and 10304 patch images in the testing set (519 of them have
defects).

Classification Model

The architecture of our classification model is residual net[5], and we use the resnet18 model defined
in torchvison.models. The model is trained for 80K iterations, and a batch of images is randomly
sampled and fed to the model in each iteration. This way, we can ensure that the same number of images
are shown to the model after the same number of iterations. In addition, validation-based early stopping is
applied during the training. We use 20% of the training set as the validation set and keep track of the model
with the best F1-score in the validation set as the final model for testing.

Results

In an experiment, we sample 2000 images from the image pool generated from GAN models, add them to
the training set of the classification model, and train the model as described in the previous section. Next,
we test the model with the testing set and report the performance. All the experiments are repeated three
times, and we re-sample the validation set and the generated images in each repeated experiment.

From Table 3.1, we can observe that augmenting the dataset by synthesized patch images from our
method, StyleGAN2-ADA trained with additional defect-pasted patches, can significantly improve the F1-
score of classification model. We also experiment on weighted-sampling the patch images with defects
during training; that is, the probability of sampling a pump patch with defects is increased and reaches the
same probability after adding generated patches to the training set. Our augmentation method outperforms
the classifier with weighted sampling. It indicates that the synthesized pump patch images provide some
new information for the classifier and help it decide whether a pump patch has defects. Furthermore, the
comparison between StyleGAN2-ADA and ours reveals the effectiveness of defect-pasted augmentation for
GAN training. More results with different size of augmentation are listed in Appendix A.

Augmentation Method Accuracy Precision Recall F1-Score

Baseline (None) 0.9401 0.2837 0.1194 0.1668
Weighted-Sampling (None) 0.9365 0.2854 0.1730 0.2152
Defect-Pasted 0.9154 0.2217 0.2588 0.2317
StyleGAN2-ada 0.9313 0.3105 0.2960 0.3030
Ours 0.9279 0.3201 0.3699 0.3402

Table 3.1: Mean testing results for pump patch classification with different dataset augmentation methods.

3.3.3 Industrial Image and Label Generation

The images and labels of pump patch with defects are generated from our modified semantic GAN, as
mentioned in section 3.2.2. Our implementation is based on the official code: https://github.com
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Figure 3.6: Synthesized pump patch images and labels generated from SemanticGAN

/nv-tlabs/semanticGAN code. It is worth noting that we find an engineering bug in the official
implementation: the regularization for image discriminator is not properly back propagated, and that makes
the SemanticGAN unable to generate reasonable pump patch image. The original SemanticGAN in the
following paragraphs refers to the one after fixing this issue. To make the defects more visible, the labeled
training set includes only patch images with defects and we add extra defect-pasted pump patch images to
the unlabelled training set of our modified semantic GAN.

The FID is converged after training for 140K iterations with batch size of 8. From the image and label
pairs shown in Figure 3.7, we could notice that our model can generate more clear defects in images at
corresponding pixels labelled as defects, in comparison with the results of SemanticGAN in Figure 3.6.
Furthermore, we measure the pixel distribution in quantitative metrics, including the number of synthesized
labels having defects, the mean of pixels of defects and the Earth-Moving distance of defects distribution
between real and generated samples in Table 3.2. The results show that our method indeed generates more
defects than SemanticGAN. It’s even more clear if we look at the histogram in Figure 3.8: our method is
better at generating large pieces of defects. However, the real distribution of defects is extremely skewed
and has a long tail, and our method cannot model that part either.

Figure 3.7: Synthesized pump patch images and labels generated from our method

Method Images with defects(%) Pixels of defects(%) Earth-Moving Distance

Real 100 2.52 N.A.
Semantic GAN 90.98 0.96 0.016
Ours 99.38 1.56 0.011

Table 3.2: Quantitative metrics of defects in synthesized labels. The smaller Earth-Moving Distance indi-
cates the distribution is closer to the real one.
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(a) SemanticGAN (b) Ours

Figure 3.8: Comparison of defect pixels distribution of synthesized pump patches between Semantic GAN
and ours. The Earth-moving distance between real and fake is shown in Table 3.2. Note that the axis is
truncated at 0.1 to make the difference clear.

3.3.4 Segmentation

In the same way as the classification task, we train a segmentation model to check whether augmenting the
training set by image/label pairs generated from our semantic GAN can improve the segmentation perfor-
mance. More details about the experiments are illustrated below.

Dataset

The primary goal of this segmentation task is to find the exact location of defects in a patch image of the
pump. The training and testing data only include patch images with defects so that the healthy patches would
not confuse the segmentation model. We assume that given some pump patches with defects, and we would
like to find out the exact location of the defects in these patches. Otherwise, the segmentation model would
not segment any defects if 95 % of the training images have no defects. Even though we consider patch
images with defects, on average only 2.5% of pixels are labeled as defects. There are 1607 patch image and
label pairs in the training set and 519 pairs in the testing set.

Segmentation Model

The segmentation model is built from the Segmentation Models Pytorch (SMP) library[28]. It has an en-
coder, a squeeze-and-excitation network[6], to extract features from the input image, a decoder, which has a
feature pyramid network(FPN)[16] architecture, and a final segmentation head to make the output semantic
mask have the dimensions and resolutions we expect. To make the model focus on segmenting pixels of
defects, we model it as a single class segmentation model and set 0.9 as the threshold for the output proba-
bility. Similar to the classification task, validation-based early stopping is also applied. The model with the
best IoU score of defects in the validation set, which is 20% of the training set, is the final model for testing.
We train the model for 20K iterations and validate the model for every 400 iterations.

12
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Results

We sample 500 image/label pairs from the collections of images and labels generated from our method and
append these synthesized images and labels to the training set of the segmentation model. Then we train
and test the model as illustrated in previous paragraphs. Like the classification section, all the experiments
are repeated three times, where the train-validation split and generated data points are re-sampled for each
experiment. Although the dataset augmentation does not give the segmentation model performance im-
provement, the mean IoU score after augmenting the data by our method is at least as good as the baseline
model, as indicated in Table 3.3. In contrast, the synthesized image/label pairs of original SemanticGAN
even introduce some noise to the segmentation model and slightly worsen the performance. Some samples
of segmentation results are presented in Figure 3.9. More results with different size of augmentation are
included in Appendix A.

Method IoU of defects IoU of healthy part mean IoU

Baseline 0.5246 0.9869 0.7558
SemanticGAN 0.5057 0.9854 0.7456
Ours 0.5234 0.9866 0.7550

Table 3.3: Mean testing results for pump patch segmentation with different dataset augmentation.

Image

Ground Truth

Prediction

Figure 3.9: Qualitative examples of segmentation prediction of pump patch images with defects. The seg-
mentation model is trained with dataset augmented by our method.

3.4 Discussion

We show that using the GAN model to augment the dataset and over-sample minority class for classification
has great potential thanks to this research on GAN models with limited data. The generated images not only
over-sample the minority classes but also give some new information to the classifier. However, it still needs
more exploration when it comes to generating both images and semantic labels for segmentation tasks.

Our experiments evidence that the StyleGAN2-ADA can generate defects without additional augmented
images, and GAN models need to generate images in great detail for industrial application. Although we
significantly improved the pump patch classification task, it is not the best from the whole perspective. The
baseline classification model is not the best one, and we may get some further improvement if training
on more advanced models. However, it is still far from the standard of real-world industrial application.
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Ideally, we should generate the full pump image without missing the details, such as defects, but it is nearly
infeasible under the limited GPU memory. Besides, generating defects in this scale will become even more
complicated, where the defects account for less than 0.05% of pixels. It’s still very challenging for the GAN
to pay attention to such details during generation. Nevertheless, our work provides a solid basis for more
research about generating specific details from GAN models.

Most of the previous dataset augmentation studies generate images for the classification task, and Se-
manticGAN makes it possible to generate image and semantic label pairs for the segmentation task. Nev-
ertheless, it is likely for the synthesized data points to confuse the segmentation model and deteriorate the
performance when the synthesized images and labels are not matched. Even if the augmented dataset is
perfectly aligned, it cannot improve the performance when the extra data points cannot provide new infor-
mation for the segmentation model. There is still more work required to generate relevant and meaningful
image and semantic labels for the segmentation model.
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Chapter 4

Minority Semantic Class Generation

In our experiments in generating patch images of the pump part, the GAN model tends to ignore the defects
if the patch images with defects only account for a small part of the dataset. For instance, it is tough for
the SemanticGAN[15] to generate evident defects when only 5% of training patch images have defects. To
generalize our research, we investigate this problem on a public dataset and propose a possible method.

4.1 Dataset

CelebAMask-HQ ataset[14] has 30K face images selected from the CelebA Dataset[18] and their corre-
sponding pixel-wise semantic labels for 19 different classes, including facial components and accessories.
We merge these 19 classes into ten classes: skin, nose, eyes, eyebrows, ears, mouth, hair, hat, eyeglass,
and earrings. The SemanticGAN research mainly focused on the facial components and did not consider
those accessories classes. It is fascinating to see how the SemanticGAN deals with these accessories classes,
which are relatively rare compared to facial components. To be more specific, only less than 30% of face
images have earrings, and around 5% have glasses or hats. Without loss of generality, we use the resolution
of 64 by 64 for experiments to explore as much as possible under limited time and computing resources.

4.2 Methods

In the SemanticGAN, the semantic labels and images are generated together, and therefore we can have
more information about the synthesized images from their corresponding semantic labels. We wonder if we
can use this new information to manipulate the generation of semantic labels and images.

4.2.1 Semantic Gradients for Image generation

The earrings on faces and the defects on pumps have very similar characteristics. They are small relative
to the whole image and have different shapes. Based on the results of the industrial image/label generation,
we use the same modified semantic GAN structure as explained in section 3.2.2 to make the model generate
earrings and other accessories in semantic labels and their corresponding pixels in images. That is, the
gradient of the semantic label discriminator would backpropagate to the image branch of generator, as
illustrated in Figure 3.4
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4.2.2 Distribution Loss

Those minority classes seem to be more likely to be ignored by the SemanticGAN, and thus we would
like to add a loss term to make the GAN more aware of the minority classes. We assume that a Gaussian
distribution can model the number of pixels for each class among the dataset. The idea is to minimize the
distance between the Gaussian distribution of generated semantic pixels and real ones. We compute the
mean and standard deviation of pixel percentages for each class in the batch data during training to get the
distribution of generated samples. The statistics for actual labeled data are pre-computed. We can compute
the KL divergence between the Gaussian distributions of actual semantic labels and generated ones, and that
is the distribution loss, which is minimized by the generator.

It is imperative to have an appropriate lambda for this distribution loss. If the lambda is too large, the
distribution loss will dominate the generator’s loss term, and the synthesized labels will have many artifacts.
Another possible solution to the artifacts is decaying the lambda during training so that the artifacts can fade
away. The distribution loss term for a single class is summarized in Eq. 5. Since this loss term is class
independent, it is possible to apply to any subset of the segmentation classes, and the loss would become the
mean of the distribution loss of all selected classes.

Ld = λdDKL(N (µr, σ
2
r )||N (µf , σ

2
f )) (5)

4.3 Experiments and Results

To evaluate the impact of our distribution loss, we consider both quantitative and qualitative results of
the synthesized images and labels. We further incorporate the encoder in the SemanticGAN to form a
segmentation model to see how the distribution loss affects the segmentation performance.

In addition, we wonder how the distribution loss term would influence the image generation for the
industrial dataset, pump parts. Therefore, we design an experiment setting similar to the earring in the
CelebAMask-HQ[14] dataset to find out how the distribution loss would guide the generation of pump
patches. More details and results are written in the following section.

4.3.1 Image Generation

The images and labels are generated from our modified semantic GAN, and we conduct experiments on the
generation with and without distribution loss. The training parameters are the same as the original Seman-
ticGAN, except we use 64 by 64 image size to speed up the training. We also add three extra accessories
classes, earrings, glasses, and hats. There are 28000 unlabelled and 1500 labeled images in the training set
and 500 labeled images in the testing set. The FID would converge after 110K iterations.

We experiment with adding the distribution loss on a single class and all of the classes. For the single
class distribution loss, we notice that it is not effective when the presence of the class is too infrequent, such
as the class of glasses and hat in the dataset. The synthesized semantic labels would have more noise and
artifacts when imposing the loss on multiple classes. It needs a decay weighting schema to fix this issue. In
the following paragraphs, we will focus on presenting the results of adding distribution loss to the class of
earrings and all classes with a decaying weight.

When the FID converges, but the percentage of pixels labeled as earrings in synthesized semantic labels
does not converge. However, in most checkpoints, our method has advantages over the original semantic
GAN in terms of earring pixels generation. If we compare the models of the best FID, as shown in Table
4.1, we can observe that the distribution loss is effective in increasing the percentage of earring pixels in the
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synthesized results. If we compare the statistics with the real labeled data, the percentage of images with
earrings of our method is higher than the real data. It indicates that our model generates small pieces of
earrings in many images instead of large pieces in a few images to minimize the distribution loss.

Although the distribution loss term of the earring class makes the model generate more pixels of earrings
without compromising the FID, it also disturbs the generation of other classes and causes some noise in the
synthesized labels. Interestingly, the artifacts in the labels do not appear in the corresponding images, as
shown in Figure 4.3. As for the experiment on distribution loss for all classes, the decaying lambda also
seems to wash away the effect of distribution loss (Figure 4.4). If considering both minority class distribution
and quality of semantic labels in generated data, our method without distribution loss have the best overall
results. It can better generate earring labels without impairing synthesis of other classes, as demonstrated in
Figure 4.2. More details about the semantic statistics of other classes are included in the Appendix B.

Method Image with earrings(%) Pixels of earrings(%) FID

Real 34.45 0.31 N.A
SemanticGAN 15.15 0.04 8.12
Ours w/o Ld 42.66 0.13 8.79
Ours w/ Ld−all 35.67 0.03 8.31
Ours w/ Ld−earring 47.34 0.19 8.04

Table 4.1: Distribution of earring pixels in synthesized labels of different GAN models.

Figure 4.1: Synthesized face images and semantic labels generated from original SemanticGAN

Figure 4.2: Synthesized face images and semantic labels generated from our method without distribution
loss

4.3.2 Segmentation by Encoder

The second part of the SemanticGAN is to train an encoder to encode any images to input vectors of the
pre-trained generator, and use the encoder-generator structure as a segmentation model. If our generator
can generate labels of the minority classes, the performance of this encoder-generator segmentation model
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Figure 4.3: Synthesized face images and semantic labels generated from our method with distribution loss
on class earring

Figure 4.4: Synthesized face images and semantic labels generated from our method with distribution loss
on all classes

should be able to handle minority class segmentation better. However, even if the generator can generate
more pixels of earrings from randomly sampled noise, it is not necessarily reflected in the testing mean IoU
score of the earring of the encoder-generator segmentation model. Although the distribution loss could not
contribute directly to the segmentation performance, backpropagation of semantic gradients to the image
branch of generator can improve the mean IoU score for almost every class, as demonstrated in Table 4.2.

Method Skin Hair Eyes Ears Brows Nose Mouth Earrings Glasses Hat

SemanticGAN 0.80 0.72 0.44 0.26 0.45 0.72 0.65 0.0119 0.0007 0.0007
Ours w/o Ld 0.83 0.76 0.59 0.29 0.48 0.78 0.76 0.0198 0.0028 0.0003
Ours w/ Ld−all 0.83 0.76 0.49 0.25 0.29 0.81 0.77 0.0066 0.0002 0.0001
Ours w/ Ld−earring 0.84 0.76 0.56 0.25 0.39 0.81 0.76 0.0055 0.0001 0.0016

Table 4.2: Testing mean IoU for each classes of segmentation by encoder-generator segmentation model

4.3.3 Industrial Image Generation

The previous experiments show that the distribution loss may cause some artifacts and noise in the syn-
thesized semantic labels. There are only two classes in our industrial image dataset, and the generator can
concentrate on generating defects without worrying about other labels. In the last chapter, we train our GAN
with only pump patch images having defects, but we would like to know if the distribution loss can help
when only part of the patches have defects. Thus, we design an experiment setting where half of the pump
patches in the dataset have defects, and the other half are healthy patches to assess the effectiveness of dis-
tribution loss in this hypothetical scenario. There are 13324 unlabelled images and 3228 labeled images in
the training set for our GAN, and 1021 patch images are reserved for the testing set. Instead of making the
distribution of defect pixels close to the actual distribution, we want to generate as many defects as possible
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for our pump dataset. We double the mean and variance for our target Gaussian distribution to have more
defects in the synthesized images and labels.

Our method can greatly change the distribution of defects without causing artifacts in synthesized labels
and without compromising the FID, and it outperforms SemanticGAN in terms of defects generation, as
demonstrated in Table 4.3. Figure 4.5 and 4.6 clearly show that our method can generate defects with better
quality than SemanticGAN. The patterns of defects are very similar to the patterns of earrings in terms of
distribution statistics. We haven’t reached the same percentages of defect pixels, but we have a lot more
images with defects than the real data. Because large defects are less common in the dataset, it’s harder
for the model to learn to generate large defects. It turns to generate small defects in more pump patches to
minimize the loss. More statistics for different checkpoints and the histogram of pixel distribution can be
found in Appendix C.

Method Image with defects(%) Pixels of defects(%) FID

Real 48.70 1.26 N.A.
SemanticGAN 46.49 0.31 49.41
Ours w/o Ld 56.48 0.52 48.35
Ours w/ Ld 73.19 0.73 45.68

Table 4.3: Distribution of defects in semantic labels generated from different GAN models.

Figure 4.5: Synthesized pump patch image and labels generated from SemanticGAN

Figure 4.6: Synthesized pump patch image and labels generated from our method with distribution loss

4.3.4 Industrial Image Segmentation

The encoder-generator segmentation model from SemanticGAN does not give good mIoU performance in
defects segmentation for pump part patch images. We train another segmentation network with the same
architecture for defect segmentation from section 3.3.4 to evaluate if the defects in the generated labels
match the images after manipulating the generation by our distribution loss. Since this is an extension of the
hypothetical scenario from the previous section, we use the same labeled data set for the GAN. The training
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Figure 4.7: Synthesized pump patch image and labels generated from our method without distribution loss

set is also roughly half healthy pump patch images and half unhealthy pump patch images with defects, and
the testing set has a similar distribution.

Suppose the segmentation model can produce comparable results after adding generated pump patch
images with defects. In that case, it indicates that the synthesized defects are pretty similar to the real ones
for the segmentation model. In each experiment, we sample 500 pump patch image/label pairs with defects
from the data points synthesized by our method and include them in the training set of the segmentation
model. All the experiments are repeated three times, and the mean testing results are presented in Table 4.4.

To accurately measure the mIoU score of defects, we consider only those cases whose target labels are
non-zero. Besides, we compute the recall and precision to take the false negative and false positive cases
into account. The definition of a confusion matrix is slightly different here: A pump patch with pixels
labeled as defects is defined as positive. It is true positive only when the predicted and target defects are
overlapped; otherwise, it is a false positive. It is a true negative only when our model predicts no defect
pixels; otherwise, it is a false negative.

From the results in Table 4.4, we can observe that we have marginal improvement for the mIoU of
defects and recall after dataset augmentation. It indicates that the pump images defects generated from our
method may provide some new information for the segmentation model. In addition, it also implies that our
generated data points are comparable to the real data and that the distribution loss does not adversely affect
the quality of generated defects.

Augmentation Method mIoU of defects Accuracy Precision Recall F1-score

Baseline (None) 0.4844 0.8480 0.7943 0.9191 0.8521
SemanticGAN 0.4696 0.8382 0.7857 0.9114 0.8439
Ours w/o Ld 0.4927 0.8451 0.7927 0.9162 0.8512
Ours w/ Ld 0.4921 0.8376 0.7741 0.9315 0.8455

Table 4.4: Mean testing results for pump patch segmentation in the hypothetical scenario where pump
patches with or without defects are around half and half.

4.4 Discussion

Our experiments on defects generation of the pump dataset and earrings generations of the CelebAMask-HQ
dataset show that our modification to SemanticGAN, including semantic gradients for images and distribu-
tion loss, make the GAN generate more pixels of minority class. Although the distribution loss causes
some artifacts in the semantic labels for the CelebAMask-HQ dataset, the concept of motivating the GAN
model to generate minority class labels is still promising. Our experiments of applying the distribution loss
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to our industrial dataset demonstrate that this loss term can change the defect distribution in the generated
semantic labels while generating corresponding defects in images. This additional variation introduced by
the distribution loss may make the generated data points more informative for the downstream task.

There are many possible improvement for our method, such as applying heuristic weighting schema to
the distribution loss or incorporating other loss terms to smooth the labels. The other main challenge is to
ensure that the corresponding image pixels are accurately generated according to the semantic labels. In our
experiment of earrings generation in the CelebAMask-HQ dataset, it is hard to tell whether the earrings are
synthesized correctly in the images because any artifacts can look like earrings. There are no perfect metrics
to evaluate the quality of these details in generated images. Replacing the image/label pair discriminator
with other strong discriminators to enhance the alignment between generated images and labels may help
the generator produce better quality on minority classes. If we can tackle these challenges, this may further
contribute to the problem of minority classes segmentation.
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Chapter 5

Conclusion

It’s still challenging for the GAN to pay attention to small details of the images, such as defects, especially
when the size of training set is limited. Our defect-pasted augmentation is proved to be effective in encour-
aging GANs to generate more defects from both image generation experiments of StyleGAN2-ADA and
SemanticGAN.

Our research shows that dataset augmentation for industrial dataset by state-of-the-art GAN models is
completely feasible. The GAN models can generate images that are almost indistinguishable from real im-
ages. However, the synthesized images don’t always provide new information for the downstream tasks.
Like all the previous work on GAN-based dataset augmentation, our results also demonstrate that over-
sampling the minority classes by images generated from GAN models can improve the classification per-
formance. Unexpectedly, adding extra synthesized images and labels aren’t very informative for the seg-
mentation model. The idea of generating both images and labels for dataset augmentation still has a lot of
potential, but we just need more studies on how to add meaningful variation to the synthesized images and
labels.

Extended from our research on generating images and labels, we would like to have further control
over the distribution of synthesized labels by adding a distribution loss. This loss term can make the GAN
generate more pixels of targeted minority class. However, this loss term causes some artifacts in the semantic
labels when there are many classes, as shown in our experiments on the CelebAMask-HQ dataset. As for the
pump part dataset, our method generates high-quality semantic labels without making artifacts and generate
images correspond to the labels. The segmentation experiments indicates that the generated defects after
applying distribution loss are not only comparable to the real defects but also possibly provide additional
information for the segmentation model.
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Appendix A

Supplementary Material for Industrial
Dataset Augmentation

This appendix will supplement the industrial dataset augmentation chapter. The following tables present
the performance of downstream tasks when we add different number of images generated by our method to
the training set. The results in Table A.1 demonstrate that the recall will increase when more pump patch
images with defects are added to the training set because all augmented images are with defects. From Table
A.2, we can conclude that it causes a drop in performance because the model starts to overfit the generated
fake image/label pairs, after adding 1500 generated image when the real/fake ratio is approximately 1.

Size Accuracy Precision Recall F1-score

0 0.9401 0.2837 0.1194 0.1668
1000 0.9273 0.2968 0.3192 0.3603
2000 0.9279 0.3201 0.3699 0.3402
4000 0.9169 0.2884 0.4348 0.3449
6000 0.8931 0.2265 0.4503 0.2978

Table A.1: Pump patch classification results with different size of dataset augmentation of our method.

Size IoU of defects IoU of healthy part mean IoU

0 0.5246 0.9869 0.7558
500 0.5234 0.9866 0.7550
1000 0.5109 0.9852 0.7481
1500 0.3453 0.9510 0.6481

Table A.2: Pump patch defects segmentation results with different different size of dataset augmentation of
our method.
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Appendix B

Supplementary Material for Minority
Semantic Class Generation:
CelebAMask-HQ Dataset

This appendix provides more information about the pixel distribution of more classes in synthesized labels
of CelebAMask-HQ from our GAN models, which are demonstrated by the histograms of pixels for other
classes.

(a) SemanticGAN (b) Ours w/o Ld

Figure B.1: Pixel distribution of class brow in synthesized labels
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(a) SemanticGAN (b) Ours w/o Ld

Figure B.2: Pixel distribution of class ear in synthesized labels

(a) SemanticGAN (b) Ours w/o Ld

Figure B.3: Pixel distribution of class mouth in synthesized labels

(a) SemanticGAN (b) Ours w/o Ld

Figure B.4: Pixel distribution of class eye in synthesized labels
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(a) SemanticGAN (b) Ours w/o Ld

Figure B.5: Pixel distribution of class nose in synthesized labels

(a) SemanticGAN (b) Ours w/o Ld

Figure B.6: Pixel distribution of class hair in synthesized labels
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Appendix C

Supplementary Material for Minority
Semantic Class Generation: Pump part
Dataset

This appendix provides more information about the defect pixels distribution in synthesized labels of our
GAN models, including the statistics of more checkpoints (Table C.1 and C.2), which indicate that our
method with distribution loss has stable and better statistics for all checkpoints, and the histogram of defect
pixels (Figure C.1), showing the distribution change by the loss term.

Method 136K 138K 140K 142K 144K

SemanticGAN 0.56 0.30 0.31 0.45 0.29
Ours w/o Ld 0.60 0.52 0.66 0.65 0.52
Ours w/ Ld 0.63 0.69 0.65 0.61 0.73

Table C.1: Percentage of defect pixels in synthesized pump patch labels of different checkpoint models.

Method 136K 138K 140K 142K 144K

SemanticGAN 65.63 40.53 46.49 54.24 40.34
Ours w/o Ld 57.46 56.47 61.86 59.83 56.48
Ours w/ Ld 69.51 63.76 66.96 67.59 73.19

Table C.2: Percentage of synthesized pump patch labels with defects of different checkpoint models.
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PART DATASET

Figure C.1: Percentage of pixels labeled as defects in generated labels.
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